联合学习(FL)是分布式学习范例,可以从边缘设备上的分散数据集中学习全局或个性化模型。然而,在计算机视觉域中,由于统一的流行框架缺乏探索,FL的模型性能远远落后于集中培训。在诸如物体检测和图像分割之类的高级计算机视觉任务中,FL很少有效地说明。为了弥合差距并促进电脑视觉任务的流动,在这项工作中,我们提出了一个联邦学习库和基准框架,命名为FEDCV,评估了三个最具代表性的计算机视觉任务:图像分类,图像分割,和物体检测。我们提供非I.I.D。基准测试数据集,模型和各种参考FL算法。我们的基准研究表明,存在多种挑战值得未来的探索:集中式培训技巧可能不会直接申请fl;非i.i.d。 DataSet实际上将模型精度降级到不同的任务中的某种程度;给出了联合培训的系统效率,具有挑战性,鉴于大量参数和每个客户端记忆成本。我们认为,这种图书馆和基准以及可比的评估设置是必要的,以便在计算机视觉任务中进行有意义的进展。 Fedcv公开可用:https://github.com/fedml-ai/fedcv。
translated by 谷歌翻译
本文研究在线算法增强了多个机器学习预测。尽管近年来已经广泛研究了随着单个预测的增强在线算法,但多个预测设置的文献很少。在本文中,我们提供了一个通用算法框架,用于在线涵盖多个预测的问题,该框架获得了在线解决方案,该解决方案具有与最佳预测指标的性能相对的竞争力。我们的算法将预测的使用纳入了在线算法的经典分析中。我们应用算法框架来解决经典问题,例如在线封面,(加权)缓存和在线设施位置,以在多个预测设置中。我们的算法也可以鲁棒化,即,可以根据最佳的预测和最佳在线算法的性能(无预测)同时使算法具有竞争力。
translated by 谷歌翻译
因果关系的科学通过为此目的提供数学工具来解释/确定系统实体之间的关系关系。尽管机器学习(ML)算法的所有成功和广泛应用,但这些算法仅基于统计学习。目前,他们无处可靠近“人类的”智力,因为他们未能以重要的“为什么?”问题。因此,研究人员正在试图将ML与因果关系的科学集成。在ML遇到的许多因果学习问题中,其中一个是这些算法对数据的时间顺序或结构愚蠢。在这项工作中,我们基于最近提出的“Neurochaos”特征学习技术(Chaosfex特征提取器)开发机器学习管道,这有助于我们在给定的时间序列数据中学习广义因果结构。
translated by 谷歌翻译
先进的制造技术使生产材料具有最先进的性质。然而,在许多情况下,这些技术的物理学模型的发展落后于实验室的使用。这意味着设计和运行实验在很大程度上通过试验和错误进行。这是次优,因为实验是成本 - ,时间和劳动密集型的。在这项工作中,我们提出了一种机器学习框架,差异属性分类(DPC),使实验者能够利用机器学习的无与伦比的模式匹配能力来追求数据驱动的实验设计。 DPC采用两种可能的实验参数集,并输出预测,其将产生具有由操作员指定的更可望的属性的材料。我们展示了DPC对AA7075管制造工艺和机械性能数据的成功,使用剪切辅助加工和挤出(形状),固相处理技术。我们表明,通过重点关注多个候选实验参数之间的选择,我们可以重新预测从处理参数预测材料属性的具有挑战性的回归任务,进入哪个机器学习模型可以实现良好性能的分类任务。
translated by 谷歌翻译